mems会议怎么样,在海淀益园举办的第五届微言大义MEMS研讨会都有哪些人去了
来源:整理 编辑:本来科技 2024-08-27 13:21:20
本文目录一览
1,在海淀益园举办的第五届微言大义MEMS研讨会都有哪些人去了
有好多专家,都是微电子相关的主题演讲和分享,益园那边环境真不错,适合办公。
2,麦克风分为几种
麦克风分类如下:按声电转换原理分为:电动式(动圈式、铝带式),电容式(直流极化式)、压电式(晶体式、陶瓷式)、以及电磁式、碳粒式、半导体式等。按声场作用力分为:压强式、压差式、组合式、线列式等。按电信号的传输方式分为:有线、无线。按用途分为:测量话筒、人声话筒、乐器话筒、录音话筒等。按指向性分为:心型、锐心型、超心型、双向(8字型)、无指向(全向型)。驻极体传声器体积小巧,成本低廉,在电话、手机等设备中广泛使用。硅微麦克风CMOSMEMS技术,体积更小。其一致性将比驻极体电容器麦克风的一致性好4倍以上,所以MEMS麦克风特别适合高性价比的麦克风阵列应用,其中,匹配的更好的麦克风将改进声波形成并降低噪声。激光传声器在窃听中使用。扩展资料:电容式麦克风有两块金属极板,其中一块表面涂有驻极体薄膜(多数为聚全氟乙丙烯)并将其接地,另一极板接在场效应晶体管的栅极上,栅极与源极之间接有一个二极管。当驻极体膜片本身带有电荷,表面电荷地电量为Q,板极间地电容量为C,则在极头上产生地电压U=Q/C。当受到震动或受到气流地摩擦时,由于振动使两极板间的距离改变,即电容C改变,而电量Q不变,就会引起电压的变化,电压变化的大小,反映了外界声压的强弱,这种电压变化频率反映了外界声音的频率,这就是驻极体传声器地工作原理。参考资料来源:搜狗百科-麦克风看你怎么分了,按什么来分性能分?电容,动圈,驻极体等等用途分?测试话筒,录音话筒,乐器话筒,舞台话筒等等品牌分?舒尔,AKG,Audix,森海塞尔,拜亚动力,纽曼美国Audix话筒话筒的种类主要有电容式和电动式两种。电容式话筒又有普通电容话筒和驻极体电容话筒,电动式话筒又有动圈式、带式等结构,电容话筒的特点是灵敏度高,具有非常宽的频带,非线性谐波失真小,最大声压级高等特点。缺点是机械强度性能差,防潮性能差,需要极化电压,在使用上较麻烦。电动话筒的特点是:使用可靠方便,不需要外加电源,机械性能好,寿命长,价格便宜,缺点是灵敏度稍低,频率响应较差。如果给话筒头加装无线电收、发装置,就成了无线话筒。在移动使用时灵活方便,但容易受到干扰,在室内使用会碰到“死区”造成失灵。?话筒的选用要根据使用环境和声源特点来决定。在室内进行语言录音,一般选用动圈式话筒,因为语言的频带较窄,使用动圈式话筒可避免产生不必要的杂音。进行音乐录音,则要选择性能好的电容式话筒,以满足宽频带、大动态、高保真的需要。若环境噪声大,可选用超指向话筒,以增加选择性。使用话筒时,要注意与声源保持0.3米左右的距离,以防失真,但近讲话筒例外。运动中的录音,要用无线话筒。使用无线话筒,要注意防止干扰和“死区”,碰到这种情况,可通过改变无线电频率和调整收、发天线来解决。?1. 麦克风从类型上有三类:电容麦克风、动圈麦克风、铝带麦克风(很少)。2. 用途上有:录音麦克风、乐器麦克风、采访麦克风、会议麦克风、语音麦克风、测试麦克风、手机麦克风、KTV/演出麦克风3. 信号传输上:无线、有线4. 指向特征上:全指向、心型、宽心型、超心型、枪型、8字型、立体声分类:按声电转换原理分为:电动式(动圈式、铝带式),电容式(直流极化式)、压电式(晶体式、陶瓷式)、以及电磁式、碳粒式、半导体式等。按声场作用力分为:压强式、压差式、组合式、线列式等。按电信号的传输方式分为:有线、无线。按用途分为:测量话筒、人声话筒、乐器话筒、录音话筒等。按指向性分为:心型、锐心型、超心型、双向(8字型)、无指向(全向型)。扩展资料:工作原理麦克风是由声音的振动传到麦克风的振膜上,推动里边的磁铁形成变化的电流,这样变化的电流送到后面的声音处理电路进行放大处理。声音是奇妙的东西。我们听到的各种不同声音,都是由我们周围空气的微小压差产生的。奇妙之处在于,空气能将这些压差如此完好、如此真实地传输相当长的距离。它是由金属隔膜连接到针上,这根针在一块金属箔上刮擦图案。 当您朝着隔膜讲话时,产生的空气压差使隔膜运动,从而使针运动,针的运动被记录在金属箔上。随后,当您在金属箔上向回运行针时,在金属箔上刮擦产生的振动会使隔膜运动,将声音重现。参考资料来源:搜狗百科-麦克风
3,我是学电子专业的想去研究所读研怎么样求推荐比较适合的研究所
以成为“中国集成电路技术创新的引领者,中国集成电路产业发展的推动者;为我国第一台硅晶体管计算机——“109丙机”研究生产了硅平面晶体管,电子所自主研发成功高端可编程芯片“慧芯1号”和“慧芯2号”及其应用软件、电离层探测与成像技术等方面的研究工作;高功率气体激光器的高重复频率脉冲CO?,电子所已成为我国微波电真空器件研制和生产的重要基地之一,取得了丰硕的成果,为中国微电子技术的进步与产业的发展做出了重要贡献、科研机构和企业开展了全方位的合作与交流,处于国内可编程片上系统(PSoC)研究的领先地位;电子所研制的电场传感器、SPR生化分析系统、小型固态pH传感器、生化微传感器集成芯片系统等方面处于国际先进和国内领先水平;激光技术研究方面达到了国际先进水平,为国家的科技进步与经济发展做出贡献,硕士生268人,享有较高的声誉。1986年,为电子科学的发展、为国家的繁荣和人类的进步做出新贡献。2中国科学院微电子研究所自诞生起就是中国半导体事业的开创者和开拓者。 1958年,现有信息与通信工程。经过五十多年的发展,3个重大行业技术支撑的研究中心;在可编程信号处理器件与技术方面,五个重点领域分别是地理空间信息技术,目前已形成了两大支柱领域和五个重点领域,11个从事应用技术研究的研究室,获国家及省部级奖励97项,其中国家科技进步奖18项、传感技术国家重点实验室(北方基地),科技支撑人员256人。其中。 在五十多年的发展历程中,中国科学院微电子研究所先后为我国第一台锗晶体管计算机——“109乙机”研究生产了半导体晶体管。此外,中国电子学会电子线路与系统分会和中国质量协会科学技术分会挂靠在电子所、穿墙成像雷达、地球物理电磁勘探装备,涵盖了微电子学研究的各个主要领域;拥有职工1000人,在读研究生400人。与国内外众多高校;有在站博士后3人。电子所已同40多个国家和地区的著名大学、科研机构建立了密切的学术交流与合作关系。每年与电子所进行国际互访的专家学者达百余人次,包括微波成像技术重点实验室。自建所以来。此外,中国科学院微电子研究所还是中国科学院EDA中心依托单位、中国物联网研究发展中心(筹)和中国科学院物联网研究发展中心依托单位。 在新的历史时期,109厂与中国科学院半导体研究所、计算技术研究所有关研制大规模集成电路部分合并为中国科学院微电子中心。2003年9月,正式更名为中国科学院微电子研究所、电子科学与技术2个一级学科硕士;在微波电真空器件方面,电子所研制的器件已成功应用于卫星;地理空间信息技术方面,电子所的卫星遥感地面处理系统技术,高素质产业创新人才和优秀工程师的培养基地”为己任,以“到中流击水,浪遏飞舟”的豪迈气概,正高级专业技术人员69人,副高级专业技术人员160人,国防杰出人才获得者1人,国家杰出青年基金获得者2人,“新世纪百千万人才”入选者3人,中国青年五四奖章获得者1人,享受政府津贴16人,中国科学院“百人计划”入选者9人,通过定期开展学术交流活动来推动我国电路与系统科学技术的发展以及改进科研院所和高校的科研质量工作,其中博士生229人;为我国第一颗人造卫星“东方红一号”提供了半导体晶体管;为我国首台1000万次/秒的晶体管计算机“757机”承担了全部集成电路的研制生产任务,继往开来,和谐奋进,电子所已发展成为国内星载SAR,正在开展嫦娥三号测月雷达、探地雷达,中国科学院微电子研究所秉承“惟精惟一、求是求新”的所训。几代微电子人坚持不懈、开拓创新:两大支柱领域分别是微波成像技术和微波电真空技术。 经过五十多年的发展,中国科学院微电子研究所已经成为一所学科布局齐全、研究领域广泛的国立研究机构。设有2个从事前沿基础研究的重点实验室,在中国微电子领域拥有广泛的影响、机载SAR以及遥感信息处理领域最重要的研发机构之一、博士研究生培养点及其博士后科研流动站。2010年共有在学研究生497人、空间信息处理与应用系统技术院重点实验室。电子所始终致力于在其各个研究领域开展国际交流和合作、电磁辐射与探测技术院重点实验室,截至2010年底,电子所共有在职职工927人,流动人员504人(客座研究员7人),离退休人员758人。在职职工中,科研人员493人、电磁探测技术、高功率气体激光技术、MEMS传感器技术和可编程芯片技术。研究所下设10个研究部门、雷达、火箭和大科学装置等整机系统,其中大功率速调管和空间行波管研究技术处于国内领先地位,继承和发扬老一辈微电子人艰苦奋斗的拼搏精神和不畏险阻的坚韧意志,为满足国家研制晶体管计算机的战略需求,中国科学院微电子研究所的前身——原中国科学院109厂应运而生,中国科学院院士1人。电子所多次成功地主办了国际和全国性的大型学术会议。电子所编辑出版的《电子与信息学报》、《Journal of Electronics(China)》、《雷达学报》在国内外发行;激光研究、高功率可调谐脉冲CO?、高功率气体激光技术部、航天微波遥感系统部、航空微波遥感系统部和可编程芯片与系统研究室。在微波成像技术方面,电子所于1979年9月17日获取了我国第一幅合成孔径雷达(SAR)图像。时至今日、总体技术以及卫星遥感图像解译的业务化应用处于国内领先,达到国际先进水平、高功率微波源与技术院重点实验室,承担并完成了上百项国家科研任务;在地球探测方面、空间行波管研究发展中心,中国青年科技奖获得者1人,卢嘉锡人才奖获得者5人。电子所是国务院学位委员会批准的首批博士、硕士学位授予单位之一。今后,电子所将以更加开放的心态和更加努力的工作,电子所面向国家需求,电子所取得了一系列重大科研成果1中国科学院电子学研究所(以下简称电子所)创建于1956年,是我国第一个综合型电子与信息科学研究所,主要从事电子与信息科学技术领域的应用基础研究和高技术创新研究
4,有谁知道纳米技术是怎么一回事
就是通过水离子发射极在高电压的作用下电离空气,并将空气中的水分子电离成极细的纳米水离子,令肌肤更易吸收。。纳米"是英文nano的译名,是一种长度单位,原称毫微米,就是10的-9次方米(10亿分之一米),约相当于4至5个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。 从具体的物质说来,人们往往用细如发丝来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。[编辑本段]纳米技术 纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等 。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,制造纳米计算机与纳米机器人,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。[编辑本段]纳米技术的内容 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。 这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 纳米技术不同于微米技术。后者是利用光刻及腐蚀等技术,从宏观尺度自上而下地进行材料的制造,集中表现在集成电路的生产等方面。而纳米技术则相反,其突出特点是基于自组装这种自下而上的方式制造纳米材料。当然,纳米材料的制造不完全依靠自组装,为了保证批量生产的效率,也会同时运用光刻技术。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 ⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 理论上讲:可以使微电机和检测技术达到纳米数量级。 ⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。(上面是老钱加注) ⒋纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的。[编辑本段]纳米技术发展历程 1990年7月,在美国巴尔的摩召开了国际首届纳米科学技术会议;1996年,在中国召开了第四届纳米科技学术会议。 首届(1992年)纳米材料会议在墨西哥召开;1994年在德国斯图加特召开了第二届国际纳米材料学术会议;1996年在美国夏威夷召开第三届国际会议;1998年在瑞典斯德哥尔摩召开了第四届纳米材料 会议;2000年在日本仙台举行第五届国际纳米材料会议。 ?准确控制原子数量在100个以下的纳米结构物质,市场规模约5亿美元 ?生产纳米结构物质,50~200亿美元 ?大量制造复杂的纳米结构物质,100~1000亿 ?纳米计算机,2000~10000亿 ?验证出能够制造动力源与程序自律化的元件和装置,60000亿[编辑本段]纳米技术的研究和应用 当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。 @纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。
5,什么叫纳米技术
纳米是长度单位,原称毫微米,就是10的-9次方米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。从具体的物质说来,人们往往用细如发丝来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。假设一根头发的直径为0.05毫米,把它径向平均剖成5万根,每根的厚度即约为1纳米。
纳米技术包含下列四个主要方面:
⒈纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。
⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。
⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。
⒋纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的。
在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技大挑战机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:
把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾?处理器已经显得十分慢了。运用基因和药物传送纳米级的mri对照剂来发现癌细胞或定位人体组织器官去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。提高太阳能电池能量效率两倍。
----------------------
"纳米"是英文nano technology 的译名,是一种度量单位,1纳米为百万分之一毫微米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。1981年扫描隧道显微镜发明后,便诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。
从迄今为止的研究善看,关于纳米技术分为三种概念:
第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。
第二种概念把纳米技术定位为徽加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。
?纳米科学技术(nanotechnology):纳米科学技术是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳电子学、纳米材科学、纳机械学等。纳米科学技术被认为是世纪之交出现的一项高科技。
?实现特有功能和智能作用的技术问题,发展纳米尺度的探测和操纵 。
?思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深入至纳米层次。
?纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。
?纳米科学与技术:也叫纳米技术,是研究结构在0.1~100nm范围内材料的性质及其应用。
?纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等 。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米技术发展历程:1990年7月,在美国巴尔的摩召开了国际首届纳米科学技术会议;1996年,在中国召开了第四届纳米科技学术会议。 首届(1992年)纳米材料会议在墨西哥召开;1994年在德国斯图加特召开了第二届国际纳米材料学术会议;1996年在美国夏威夷召开第三届国际会议;1998年在瑞典斯德哥尔摩召开了第四届纳米材料
会议;2000年在日本仙台举行第五届国际纳米材料会议。
纳米技术发展历程:
?准确控制原子数量在100个以下的纳米结构物质,市场规模约5亿美元
?生产纳米结构物质,50~200亿美元
?大量制造复杂的纳米结构物质,100~1000亿
?纳米计算机,2000~10000亿
?验证出能够制造动力源与程序自律化的元件和装置,60000亿
6,什么叫纳米技术
纳米是长度单位,原称毫微米,就是10的-9次方米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。从具体的物质说来,人们往往用细如发丝来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。 纳米技术包含下列四个主要方面:⒈纳米材料:当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。⒋纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的。在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技大挑战机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括: 把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾?处理器已经显得十分慢了。运用基因和药物传送纳米级的mri对照剂来发现癌细胞或定位人体组织器官去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。提高太阳能电池能量效率两倍。----------------------"纳米"是英文namometer的译名,是一种度量单位,1纳米为百万分之一毫微米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。1981年扫描隧道显微镜发明后,便诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 从迄今为止的研究善看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为徽加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。纳米技术(纳米科技nanotechnology) 纳米技术其实就是一种用单个原子、分子制造物质的技术。 从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。 虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳电子学、纳米材科学、纳机械学等。 1993年,第一届国际纳米技术大会(intc)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。 纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。 这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 ⒉、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(mems),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 理论上讲:可以使微电机和检测技术达到纳米数量级。 3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。(上面是老钱加注) 4、纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的
7,麦克芯的原理
动圈麦克风的工作原理是 以人声通过空气使震膜震动,然后在震膜上的线圈绕组和环绕在动圈麦头的磁铁形成磁力场切割,形成微弱的电流驻极体麦克风的工作原理是 以人声通过空气使震膜震动,从而然后上震膜和下金属铁片的距离产生变化,使其电容改变,形成电流阻抗按换能原理为:电动式(动圈式、铝带式),电容式(直流极化式)、压电式(晶体式、陶瓷式)、以及电磁式、碳粒式、半导体式等。 按声场作用力分为:压强式、压差式、组合式、线列式等。 按电信号的传输方式分为:有线、无线。 按用途分为:测量话筒、人声话筒、乐器话筒、录音话筒等。 按指向性分为:心型、锐心型、超心型、双向(8字型)、无指向(全向型)。 此外还有驻极体和最近新兴的硅微传声器、液体传声器和激光传声器。 动圈传声器音质较好,但体积庞大。 驻极体传声器体积小巧,成本低廉,在电话、手机等设备中广泛使用。 硅微麦克风基于CMOS MEMS技术,体积更小。其一致性将比驻极体电容器麦克风的一致性好4倍以上,所以MEMS麦克风特别适合高性价比的麦克风阵列应用,其中,匹配得更好的麦克风将改进声波形成并降低噪声。 激光传声器在窃听中使用。[编辑本段]历史 麦克风的历史可以追溯到19世纪末,贝尔(Alexander Graham Bell)等科学家致力于寻找更好的拾取声音的办法,以用于改进当时的最新发明——电话。期间他们发明了液体麦克风和碳粒麦克风,这些麦克风效果并不理想,只是勉强能够使用。 二十世纪,麦克风由最初通过电阻转换声电发展为电感、电容式转换,大量新的麦克风技术逐渐发展起来,这其中包括铝带、动圈等麦克风,以及当前广泛使用的电容麦克风和驻极体麦克风。[编辑本段]种类介绍 内置麦克风: 内置麦克风是指设置在数码摄像机内的麦克风,用作拍摄录音之用。作为视频和音频的记录装置,数码摄像机的麦克风当然不能马虎。对于消费级的数码摄像机来说,很多麦克风都安装在机体里面,这样的好处是能节省空间,真正实现,消费数码摄像机方便的理念,但是这样一来,内置麦克风可能会在录音的同时录下机器的转动声音,这些噪音在后期制作中很容易分辨,却跟难分离和去掉的。 要解决这些噪音问题,有以下几个办法: 选择录音功能强大的数码摄像机。在众多数码摄像机中,内置麦克风功能最多的要数松下的机型。松下内置的广域收音麦克风,在用远摄镜拍摄较远的人物时,较近的环境声都盖过了人物的声音,而松下公司给摄录机均加上Zoom Mic功能,可以随镜头变焦,缩窄收音范围,减少杂声,是简单而实用的设备。收音方面亦有Wind Cut功能,可减少因风声过大引起的杂声。 至于佳能、索尼和JVC的数码摄像机,虽然麦克风在收音性能上与松下并无大差异,但是也相对少了不少的特殊功能。以上提及的数码摄像机,都可以另外配置一个变焦麦克风,其功能和松下的内置麦克风一样,外置的麦克风有一点好处,就是可以避免录下机器转动的声音,外置麦上的隔风层,还能减少空气流过的声音。而对于专业的数码摄像机来说,通常使用的都是外置麦克风。 专业麦克风: 专业麦克顾名思义是有别于普通民用麦克风。 从种类上来分目前主要有电容麦克风(包括驻极体也叫预极化)、动圈麦克风、铝带麦克风等。 从功能大概组要分三类: 第一,演出用麦克风,主要使用动圈麦克风和电容麦克风(主要根据使用场合和要求不同而选择)。 第二,录音用麦克风,主要使用电容麦克风和铝带话筒,录音用电容话筒不包括驻极体麦克风。 第三,会议用麦克风,主要使用驻极体和少量的动圈麦克。 无线麦克风: 目前,市场上销售的麦克风主要分为两大类:一类是动圈式话筒。其主要特点是音质好,不需要电源供给,但价格相对较高。另一类话筒是驻极体话筒。其特点是耐用,灵敏度较高,需要1.5~3V的电源供给,音质比同价位的动圈式话筒要差一些。但其价格相对较低,适合作播音麦克风。 作为家用麦克风,最好选择动圈式,因为其音质比其他种类的要好一些,可以真实地再现人声,且不易在音量大的环境下与音响设备发生自激啸叫,损坏音箱中的高音扬声器。正品货通常包装精美,外观设计也很美观,话筒握在手中应有沉甸甸的感觉,手感舒适,丝网罩上应无毛刺,更不能损坏。话筒线上应有与话筒相一致的商标品牌。 在选出自己比较满意的产品后,可用一台质量优越的进口高保真音响进行试机。试机时,将麦克风插入音响耳机插孔,将音量旋至最小,用随机的CD机或VCD机播放正版音乐带,音量开小一些,打开话筒开关,此时,你会发现麦克风成了一只小的扬声器,你可以用不同的话筒试验,选出音质最好的一种。 最后再检查其工艺,即摇动咪头,不应松动,更不能与话筒脱离。接入功放的话筒插孔后,开关时话筒不应有“咔啦”声,按压开关不应有任何杂音出现。经过以上的精挑细选,麦克风均能通过的话,这样的麦克风无疑是优良的。 电容式麦克风: 电容式麦克风有两块金属极板,其中一块表面涂有驻极体薄膜(多数为聚全氟乙丙烯)并将其接地,另一极板接在场效应晶体管的栅极上,栅极与源极之间接有一个二极管。当驻极体膜片本身带有电荷,表面电荷地电量为Q,板极间地电容量为C,则在极头上产生地电压U=Q/C,当受到振动或受到气流地摩擦时,由于振动使两极板间的距离改变,即电容C改变,而电量Q不变,就会引起电压的变化,电压变化的大小,反映了外界声压的强弱,这种电压变化频率反映了外界声音的频率,这就是驻极体传声器地工作原理。 电容式麦克风的膜片多采用聚全氟乙丙烯,其湿度性能好,产生的表面电荷多,受湿度影响小。由于这种传声器也是电容式结构,信号内阻很大,为了将声音产生的电压信号引出来并加以放大,其输出端也必须使用场效应晶体管。 电容式麦克风的优点 1、能将声音直接转换成电能讯号的最佳设计原理: 电容式麦克风是利用导体间的电容充放电原理,以超薄的金属或镀金的塑料薄膜为振动膜感应音压,以改变导体间的静电压直接转换成电能讯号,经由电子电路耦合获得实用的输出阻抗及灵敏度设计而成。 2、能展现『原音重现』的特性: 音响专家以追求『原音重现』为音响的最高境界!从麦克风的基本设计原理分析,不难发现电容式麦克风不仅靠精密的机构制造技术,而且结合复杂的电子电路,能直接将声音转换成电能讯号,先天上就具有极优越的特性,所以成为追求『原音重现』者的最佳选择。 3、具有极为宽广的频率响应: 振动膜是麦克风感应声音及转换为电能讯号的主要组件。振动膜的材质及机构设计,是决定麦克风音质的各项特性。由于电容式麦克风的振动膜可以采用极轻薄的材料制成,而且感应的音压,直接转换成音频讯号,所以频率响应低音可以延伸到10Hz以下的超低频,高音可以轻易的达到数十KHz的超音波,展现非常宽广的频率响应特性! 4、具有超高灵敏度的特性: 在振动膜上面因为没有音圈的负载,可以采用极为轻薄的设计,所以不但频率响应极为优越,而且具有绝佳的灵敏度,可以感应极微弱的声波,输出最清晰、细腻及精准的原音! 5、快速的瞬时响应特性(Transient Response)是先天上的赢家: 振动膜除了决定麦克风的频率响应及灵敏度的特性外,对声波反应快慢的能力,即所谓「瞬时响应」特性,是影响麦克风音色的一个最重要因素。麦克风瞬时响应特性的快慢,决定于整个振动膜的轻重,振动膜越轻,反应速度就越快。电容式音头极为轻薄的振动膜,具有极快速的瞬时响应特性,能展现清晰、明亮而有劲的音色及精准的音像。尤其中、低音完全没有音染及『箱音』,高音细腻而清脆,是电容式最显著的音色特点。由下面的附图可明显看出电容式音头的瞬时响应特性远优于动圈式。 6、具有超低触摸杂音(Handling Noise)的特性,是音响专家最赞赏的特点: 使用手握式麦克风时因与手掌接触产生的触摸杂音,让原音混杂了额外的噪音,对音质影响至巨,尤其对具有前置放大电路的无线麦克风更严重,所以触摸杂音成为评断麦克风优劣的重要项目。从物理现象探讨,鹅毛与铜板同样掉到地板上,鹅毛几乎听不到掉落的声音,而铜板就很大声,显示较轻的材料比较重的撞击声小。同理,电容式麦克风的振动膜比较轻,先天上就具有『超低触摸杂音』的绝佳特点。 7、具有耐摔与耐冲击的特性: 使用麦克风难免因不慎掉落碰撞导致故障或异常。由于电容式音头是由较轻的塑料零件及坚固的轻金属外壳构成,掉落地面的撞击力较小,损坏的故障率较低。 8、具有体积小、重量轻的独特优点: 电容式麦克风因采用超薄的振动膜,具有体积小、重量轻、灵敏度高及频率响应优越的特点,所以能设计成超小型麦克风(俗称小蜜蜂及小蚂蚁)广泛的应用。 9、最适合装配在无线麦克风上! 电容式麦克风具有上述绝佳的特点,成为音响工程专家及演唱高手的最爱,而无线麦克风在舞台演唱或在家里唱卡拉OK,已经成为当今世界的趋势,无线麦克风因本身可以提供电容式音头所需的偏压,而拥有电容式麦克风的全部优点,成为数字音响时代,专业音响行家梦寐以求的最佳麦克风。[编辑本段]消除回音 随着网络的普及,视频聊天和语音聊天逐渐成为我们和朋友沟通、交流的重要手段。不过,当大家谈兴正浓的时候,如果在语音中夹杂着其他的杂音,或者耳机中同时传出自己和对方的说话声,你一定会觉得非常扫兴。这时,千万不要怪你的麦克风,很可能不是它的错。 不少人在使用麦克风之前,喜欢将音量控制面板中“麦克风”一栏的“静音”选项的勾去掉,并且把麦克风音量跳到最大。其实这种做法是有问题的,下面我们一起做个测试说明这一点。 试验一、 在音量控制面板中,先把“麦克风”一栏的“静音”选中,然后用Windows系统自带的“录音机”来做 录音测试 ,当对着麦克风说话时,“录音机”中是有波形的。这说明录音操作是实现了的。 试验二、 而当把麦克风的“静音”选项的勾去掉,再用“录音机”进行录音时,首先进入你耳朵的,恐怕 就是音箱或耳机中那些刺耳的杂音了。录音后再听一下回放,你会发现你的声音有重叠现象。 试验三、 当把麦克风的音量调到最小时,仍然可以录音。而且录出来的声音音量没有任何问题,说明该音量控制对于麦克风输出的声音音量没有什么影响。 通过以上测试,可以得出如下结论:(1)“麦克风”的“静音”选项并不是控制麦克风发声的,而是控制音箱和耳机是否反馈麦克风的声音。所以建议大家在使用麦克风时,将“静音”选项选中!这样你可以消除耳机中的杂音和回馈音,以便得到更好的语音效果。 (2)调节“麦克风”中的音量控制滑块,并不能改变麦克风实际输出音量的大小。问:既然这个麦克风选项没有用,那如何才能正确调节麦克风呢?答案:首先双击“小喇叭”图标,打开“选项中的“属性”界面,然后选中“录音”并确定,然后进入“录音控制”的对话框,这里也有一个麦克风选项,勾选“麦克风”一栏的“选择”项,接下来就可以用音量控制来调节麦克风的音量了。 最后补充两点: (1)如果双击“小喇叭”图标没有看到“麦克风”的选项,你可以打开“选项”中的“属性”, 然后选中“播放”,并在界面下方的列表框中将“麦克风”一项选中即可。 (2)如果将麦克风的音量调到最大,对方还是听不清,可以将麦克风的“话筒增强”打开, 具体方法为:打开“选项”中“属性”,选择“录音”并确定,然后进入“录音控制”面板,在该面板中点击“麦克风”一栏下的“高级”按钮,并在“麦克风高级控制”界面中将"1.Mic Boost”选中即可。在确保麦克风是“健康“的前提下,通过上述设置,你的麦克风一 定会更加有活力。
文章TAG:
mems会议怎么样 在海淀益园举办的第五届微言大义MEMS研讨会都有哪些人去了